
R Basics

Basic calculator

Addition:
> 7+4

Subtraction:
> 7-4

Multiplication:
> 7*4

Division:
> 7/4

Exponents:
> 7^4

Modular arithmetic (remainders):
> 7%%4

Variables

A variable is a name you create that stands for some number or set of numbers. You can create a
variable by assigning it a value:
> x = 3

You can also make a variable equal the result of a computation:
> x = 3*4

Note: The = sign doesn't mean equal; it means assign (or, make equal). It assigns whatever's on the

right to be the value of the variable on the left. Some things that don't work:
> 4 = x

> x + y = 7

You can find the current value of a variable by entering its name:
> x

You can use variables in calculations just like they were numbers:
> x * 7

Variable names must start with a letter and can only contain letters, numbers, periods, and underscores.
Examples of allowable variable names:
x, A, my_Variable, my.other.variable, variable3

Examples of unallowable variable names:
3x, my#variable, v@riable

Variable names are case-sensitive, so you could have variables called x and X, and they would be

distinct.

Functions

A function computes some function of the values you give to it. The function and its name already exist
within R.

The way you write it is functionName(input1, input2, ...).

The sum() function adds up the values you give it:
> sum(3,5,6)

> sum(x,4,y,x)

The prod() function does products:
> prod(3,4,5)

The log() function does natural (base e) logarithms:
> log(3)

If you give log() two entries instead of one, it uses the second as the base.
> log(100,10)

The exp() function does exponentiation:
> exp(x)

This will return e^x (where e = 2.71828…).

You can combine functions with other operations and assignments.
> z = sum(2, 3*5, 7) * 2 + prod(3,4)

In this example, first sum(2, 3*5, 7) is evaluated, then the result (29) is multiplied by 2, then

prod(3,4) is evaluated and added to the fi rst part, and then the result of the whole computation is

assigned to the variable z.

If you give a function more (or fewer) entries than it can handle, it objects. These commands will give
errors:
> exp(3,5)

> log(2,2,2)

Notice that sum() and prod() can take as many entries as you give them.

Vectors

In statistics we use vectors to represent sets of measurements (e.g. a score for each person). Vectors are

created in R using the special c() function, which means concatenate. c() takes a set of numbers or

vectors and concatenates them into one vector. c() isn't a function in the sense that it computes

something, but it is a function in the R sense, because it takes a set of inputs and turns them into a
specific output.
> X = c(2,4,5,6,3)

> X

[1] 2 4 5 6 3

You can also concatenate whole vectors:
> c(X,12,X)

[1] 2 4 5 6 3 12 2 4 5 6 3

Components of vectors

Each entry in a vector is called a component. If you want to see just one or few components of a vector,
you use
square brackets:
> X = c(2,4,5,6,3)

> X[5]

[1] 3

You can do arithmetic with the components of a vector:
> X[3] + 1

[1] 6

> X[3]*x[4]

[1] 30

The entry inside the brackets is called the index. You can use a vector for the index to get multiple
components.
> Y = c(1,2,3)

> X[Y]

[1] 2 4 5

Note: The output is always in the same order as your index.
> X[c(5,3,1)]

[1] 3 5 2

Arithmetic with vectors

A scalar is a single number (i.e., not a vector). Adding or multiplying a vector by a scalar applies that
operation to every component of your vector.
> x + 2

> x*3

You would do this if you had to transform a set of data from one measurement scale to another
> fah = cel * 9/5 + 32

> min = sec/60

Adding or multiplying two vectors is done component-by-component. You would do this if you needed to
combine two variables.
> exam1 = c(87,83,66,97)

> exam2 = c(89,90,87,78)

> exam1 + exam2

[1] 176 173 153 175

> daysWorked = c(3,6,5,8,7)

> hoursPerDay = c(8,4,6,6,8)

> daysWorked * hoursPerDay

[1] 24 24 30 48 56

The : operator

Often you want a vector of the form c(1,2,3,4,5,...). The : operator does this.
> 1:5

[1] 1 2 3 4 5

> x = 7

> 1:x

[1] 1 2 3 4 5 6 7

It can start and end anywhere
> -7:-2

[1] -7 -6 -5 -4 -3 -2

It can have a fractional part
> .5:6.5

[1] .5 1.5 2.5 3.5 4.5 5.5 6.5

Truth values

If you input a statement that can be either true or false, R gives you a result of TRUE or FALSE. TRUE

and FALSE

are not va riables because you can't define them; it's best to think of them as special (logical) numbers.
> 1 < 2

[1] TRUE

> 2 > 7

[1] FALSE

> 2*6 > 9-4

[1] TRUE

If you want to evaluate an equality, i.e. a statement that two things are equal, use ==. (Remember, single

= means assign, not equals.)
> 1 == 1

[1] TRUE

> 2*3 == 6

[1] TRUE

> 1+1 == 3

[1] FALSE

If one side of your statement is a vector, R evaluates the equation for every component, and returns a

vector of TRUEs and FALSEs.
> examScore = c(92,86,98,75)

> cutoff = 90

> examScore > cutoff

[1] TRUE FALSE TRUE FALSE

If both sides are vectors, then component 1 on the right side is compared to component 1 on the left side,
and so on.
> preTest = c(92,79,81,89)

> postTest = c(90,85,81,93)

> postTest > preTest

[1] FALSE TRUE FALSE TRUE

> postTest == pretest

[1] FALSE FALSE TRUE FALSE

A statement comparing vectors must use vectors of the same length. This will give an error:
> X = c(4,7,6)

> Y = c(4,8,6,7,3)

> X == Y

Using TRUE and FALSE as indices

An input like X[c(1,4,5)] means give me the 1st, 4th, and 5th components of X.

Another way to select components of a vector is with a list of TRUEs and FALSEs. This tells R to give us

the components that correspond to TRUEs but to skip ones corresponding to FALSEs.
> X = c(3,6,5,8,6)

> Y = c(TRUE,FALSE,FALSE,TRUE,TRUE)

> X[Y]

[1] 3 8 6

This is useful for selecting a subset of your data that meets some criterion:
> examScore[heightInches > 72]

In this example, the expression heightInches > 72 is computed first and results in a truth vector with

one entry (TRUE or FALSE) for every subject. This truth vector is then used as the index for examScore.

R outputs the values of examScore for which heightInches > 72 is TRUE.

Strings

A string is non-numeric information, like a label.
> "glorp"

[1] "glorp"

> x = "glorp"

> y = "yingle"

> c(x,y)

[1] "glorp" "yingle"

We use strings for nominal variables.
> sex = c("male","male","female","female","male")

You can't do much with string variables, but you can get truth values.
> sex == "male"

[1] TRUE TRUE FALSE FALSE TRUE

We can then use these truth values to select subsets of data on other variables:
> examScore = c(87,68,96,57,82)

> examScore[sex=="male"]

[1] 87 68 82

> examScore[sex=="female"]

[1] 96 57

Assignment

Pretend you have collected data on 5 subjects. For each subject, you have measured their height (in
inches), sex, favorite color, distance they walk to school (in miles, including decimals), and time it takes
them to get to school (in minutes).

1. Create variables for all five of these measures. Use realistic values.

2. Compute the sum of heights of all your subjects.

3. Use your time-in-minutes variable to compute a new variable for time in hours.

4. Use your distance and time-in-hours variables to compute a new variable for average speed, in mph.
Display the values of your new mph variable.

5. Have R display the heights of all your female subjects.

6. Have R display the walking time for all subjects that live more than one mile from school.

