
Data frames

If you have a set of measurements on the same set of subjects, it's useful to organize them into a single
structure called a data frame. A data frame is like a matrix, meaning it has rows and columns. Each
column is a variableand each row is a subject.

> sex = c('m','m','f','f','f')

> age = c(19,23,4,35,34)

> height = c(67,63,49,74,57)

> data = data.frame(sex,age,height)

> data

sex age height

1 m 19 67

2 m 23 63

3 f 4 49

4 f 35 74

5 f 34 57

You can retrieve the names of your variables. Notice this is a vector of strings.
> names(data)

[1] "sex" "age" "height"

You can change the variable names:
> names(data) = c("gender","ageInYears",”heightInInches”)

Another useful function is summary(), which gives several descriptive statistics at once. You can apply

summary() to a data frame to get summaries of all variables at once. This is usually the first command

you'll type when you open a dataset, to get an initial impression of the data.
> summary(data)

sex age height

f:3 Min. : 4 Min. :49

m:2 1st Qu. :19 1st Qu. :57

 Median :23 Median :63

 Mean :23 Mean :62

 3rd Qu. :34 3rd Qu. :67

 Max. :35 Max. :74

Notice the summary for sex is simpler—all we get is frequencies, since the values of this variable aren’t

numerical.

Some other useful functions:

The size of a data frame – first rows (subjects), then columns (variables):
> dim(data)

[1] 5 3

The length of a vector (i.e. of a single variable). This tells us how many observations we have:
> length(data$sex)

Reorder a vector from lowest to highest
> sort(data$age)

Components of a data frame

Components of a data frame work just like components of a vector, but you have to specify both the row
and then the column.
> data[2,1]

This gives the second entry in the first column, meaning the value of Variable 1 for Subject 2.

You can also get a whole row by omitting the column index, or a whole column by omitting the row index
(just be sure not to forget the comma). This shows all the data from subject 1 (the first row):
> data[1,]

This shows variable 1 for all subjects (the first column):
> data[,1]

As with components of vectors, you can look at multiple rows or columns at once. Here are the data for
the first 3 subjects:
> data[1:3,]

You could store this as a new data frame
> datanew = data[1:3,]

Another way to access a single variable from a data frame is with the $ symbol.
> data$age

[1] 19 23 4 35 34

> data$age[1]

[1] 19

Plotting data

You can make a histogram using the hist() function
> hist(X)

Set the number of bins:
> hist(X, breaks=10)

Make a scatterplot to see the relationship between two variables:
> plot(X,Y)

Each point is this plot corresponds to a single subject. The horizontal position of the point is that subject’s

value for X. The vertical position of the point is that subject’s value for Y.

Frequency distribution tables

Create a set of data. Include at least 20 scores, and make sure there are many repetitions.
> X = c(..., ..., ...)

First, look at the values in the sample and the frequencies of those values. The function factor(X) tells

R to treat X as a nominal variable, meaning just a collection of values without any numerical meaning

(like sex above).

If we input this to the summary() function, we get frequencies of all the values.
> f = summary(factor(X))

> f

This is a frequency distribution table. It shows you the frequency f(x) for every value x. Notice that the

total of
the frequencies equals the size of the sample.
> n = length(X)

> n

> sum(f)

f is very similar to a histogram. In fact we can make a bar plot of f to get a histogram.
> barplot(f)

Cumulative distributions

Pick any value in your sample.
> x = ___

To find the value of the cumulative distribution at x, we need to know how many scores are less than or

equal to x. There are two ways to do this.

First, we can count the raw scores. Recall that this command:
> X <= x

will give a TRUE/FALSE vector showing which entries in X are less than or equal to x. If we take the

sum of this vector, sum() will add up all the TRUEs, which tells us the total number of scores that are

less than or equal to x.
> count = sum(X <= x)

The second solution is to use the frequency table, and add up the frequencies for all values less than or

equal to x. To do this, you need to find which entry x is in the table. If it were the third entry (meaning x

is the third smallest of the values that appear in the sample), then you would enter
> count = sum(f[1:3])

These two uses of sum() work in different ways. The first counts how many times X is less than or

equal to x, whereas the second adds up the frequencies in f that correspond to values less than or

equal to x. You should be able to see why both methods give the same result.

Either way you do it, you can then get the cumulative distribution by dividing the count by the sample size.
> count/n

To get the whole cumulative distribution function, use ecdf(), which stands for empirical cumulative

distribution function.
> F = ecdf(X)

ecdf() is an unusual function because the result it gives, F, is a function itself. You can use the function

F to evaluate the cumulative distribution at any value. Start with x to verify you get the same result as

above. Then try some other values, including values inside, below, and above the raw distribution.
> F(x)

To see the whole function at once, plot it. Notice how it starts at zero, it jumps up at every value in the
sample, and it ends at one.
> plot(F)

Loading data

If you have data stored as a text file, R will read it in and create a data frame. You can do this with

internet files or files on your local machine. (The header=TRUE input tells the read.table() function

that the first row of the data file shows the variable names.)

> data = read.table("Location of lab2-1.txt",header=TRUE)

Ex: > data = read.table("/Users/Sam/Desktop/lab2-1.txt",header=TRUE)

Recall that the first thing you should do when opening a new data file is to get a summary:
> summary(data)

 exam1 exam2 final

Min. :31.52 Min. :50.65 Min. :56.74

1st Qu. :62.78 1st Qu. :70.30 1st Qu. :68.44

Median :72.84 Median :81.81 Median :79.07

Mean :71.01 Mean :79.37 Mean :78.25

3rd Qu. :77.10 3rd Qu. :91.27 3rd Qu. :88.59

Max. :95.57 Max. :98.10 Max. :97.99

This shows that you have three variables, and it gives you their names and some descriptive statistics.

Assignment

1. Load the dataset called "lab2-2.txt" from the course website.

2. Display a summary of all the variables. Determine how many variables and how many subjects there
are. Write how you interpret the output (e.g., "12 variables, 5 subjects").

3. Display the data for the last subject. Notice the values for this subject are senseless, meaning the data
were input incorrectly and can't be used. Create a new data frame from your original one that excludes
this subject. Use the new data frame for all subsequent questions.

4. Plot age against depression. Don't copy the plot into the submission window, but type a quick sentence
about what pattern your plot shows.

5. Make a histogram of extraversion, with a reasonable number of bins. You should try a few different
options and decide on which looks most useful. Don't copy your plot into the submission page; just your
command(s).

6. Create a frequency table for years of education. Use the table to determine how many people have not
graduated high school.

